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Abstract
Sensing physiological signals from the human head has long 
been used for medical diagnosis, human-computer interac-
tion, meditation quality monitoring, among others. However, 
existing sensing techniques are cumbersome and not desir-
able for long-term studies and impractical for daily use. Due 
to these limitations, we explore a new form of wearable sys-
tems, called LIBS, that can continuously record biosignals 
such as brain wave, eye movements, and facial muscle con-
tractions, with high sensitivity and reliability. Specifically, 
instead of placing numerous electrodes around the head, 
LIBS uses a minimal number of custom-built electrodes to 
record the biosignals from human ear canals. This recording 
is a combination of three signals of interest and unwanted 
noise. Therefore, we design an algorithm using a supervised 
Nonnegative Matrix Factorization (NMF) model to split the 
single-channel mixed signal into three individual signals 
representing electrical brain activities (EEG), eye movements 
(EOG), and muscle contractions (EMG). Through prototyp-
ing and implementation over a 30 day sleep experiment con-
ducted on eight participants, our results prove the feasibility 
of concurrently extracting separated brain, eye, and muscle 
signals for fine-grained sleep staging with more than 95% 
accuracy. With this ability to separate the three biosignals 
without loss of their physiological information, LIBS has a 
potential to become a fundamental in-ear biosensing tech-
nology solving problems ranging from self-caring health to 
non-health and enabling a new form of human communica-
tion interfaces.

1. INTRODUCTION
Physiological signals generated from human brain, eye, 
and facial muscle activities can reveal enormous insight 
into an individual’s mental state and bodily functions. For 
example, acquiring these biosignals is critical to diagnose 
sleep quality for clinical reasons, among other auxiliary 
signals. Even though providing highly reliable brain signal 
Electroencephalography (EEG), eye signal Electrooculography 
(EOG), and muscle signal Electromyography (EMG), the gold-
standard methodology, referred to as Polysomnography 
(PSG),9 has many limitations. Specifically, PSG attaches 
a large number of wired electrodes around human head, 
requires an expert sensor hookup at a laboratory, and pro-
vides a risk of losing sensor contact caused by body move-
ments during sleep. Consequently, this gold-standard 
approach is uncomfortable, cumbersome to use, and expen-
sive and time-consuming to set up.

The original version of this paper is entitled “A Lightweight 
And Inexpensive In-ear Sensing System For Automatic 
Whole-night Sleep Stage Monitoring” and was published 
in Proceedings of the 14th ACM Conference on Embedded 
Network Sensor Systems (SenSys), 2016, ACM, New York, 
NY, USA.

As an effort to overcome the inherent limitations of PSG, 
there exist various wearable solutions developed to acquire 
the biosignals with high resolution and easy self-applica-
bility. They involve electrode caps, commercial head-worn 
devices (e.g., EMOTIV, NeuroSky MindWave, MUSE, Kokoon, 
Neuroon Open, Aware, Naptime, Sleep Shepherd, etc.), and 
hearing aid-like research devices.6, 10 However, these solu-
tions are stiff, unstable, and only suitable for either short-
term applications or in-hospital use. In other words, they are 
still inconvenient and less socially acceptable for outdoor, 
long-term, and daily activities.

To fill in this gap, we propose a Light-weight In-ear 
BioSensing (LIBS) system that can continuously record the 
electrical activities of human brain, eyes, and muscles con-
currently using a minimum number of passive electrodes 
placed invisibly in the ear canals. In this work, particularly, 
the idea of sensing inside human ears has been motivated 
from the fact that the ear canals are reasonably close to all 
sources of the three biosignals of interest (i.e., EEG, EOG, and 
EMG signals) as shown in Figure 1. Furthermore, physical 
features of the ear canal allow a tight and fixed sensor place-
ment, which is desirable for electrode stability and long-
term wearability. Hence, we carefully develop LIBS using very 
flexible, conductive electrodes to maximize the quality of its 
contact area with the skin in the wearer’s ear canals for good 
signal acquisition while maintaining a high level of comfort. 

Figure 1. Conceptual illustration of LIBS and its relative position to 
the sources of EEG, EOG, and EMG signals.
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that automatically determines appropriate sleep stages from 
LIBS’s outputs acquired in sleep studies as its application. 
Generally, the whole-night sleep staging system, as illustrated 
in Figure 2, consists of three following primary modules.

2.1. Signal acquisition
Overall, this module focuses on tackling our first challenge that 
requires (1) an ability to adapt to the small uneven area inside 
human ear and its easy deformability under the jaw movements 
(e.g., teeth grinding, chewing, and speaking), (2) a potential to 
acquire the naturally weak biosignals, which have micro-Volt 
amplitude, and (3) a provision of comfortable and harmless 
wearing to the users. We fulfill these obstacles by firstly custom-
making a deformable earplug-like sensors using a viscoelastic 
material with atop sensitive electrodes using several layers of 
thin, soft, and highly conductive materials. To possibly capture 
the weak biosignals from inside human ears, we then increase 
the distance between the main electrodes and the reference 
point to further enhance signal fidelity. Finally, we preprocess 
the collected signal to eliminate signal interference (e.g., body 
movement artifact and electrical noise).

2.2. In-ear mixed signal separation
In this module, we form a supervised algorithm to overcome 
our second challenge for signal separation. This challenge, 
in detail, is related to (1) overlapping characteristics of three 
signals in both time and frequency domains, (2) a random 
activation of the sources generating them, and (3) their vari-
ation from person to person and in different recordings. We 
solve these problems by developing a supervised Nonnegative 
Matrix Factorization (NMF)-based model that can separate 
the preprocessed in-ear mixed signal into EEG, EOG, and 
EMG with high similarity to the ground truth given by the 
gold-standard device. Specifically, our separation algorithm 
initially learns prior knowledge of the biosignals of interest 
through their individual spectral templates. It then adapts 
the templates to the variation between people through a 
deformation step. Hence, the model we build can alter itself 
slightly to return the best fit between the expected biosig-
nals and the given templates.

2.3. Automatic sleep staging
This last module provides a set of machine learning algo-
rithms to continuously score sleep into appropriate sleep 
stages using EEG, EOG, and EMG separated from the in-
ear mixed signal. Because those signals can have similar 

However, as minimizing the number of used electrodes, we 
can achieve only the single-channel signal, which is a mix-
ture of EEG, EOG, EMG signals, and unwanted noise. We then 
develop a signal separation model for LIBS to extract the three  
signals of interest from the in-ear mixed signal. To validate the 
lossless of essential physiological information in the separated 
signals acquired by LIBS, we finally develop a sleep stage classi-
fication algorithm to score every 30sec epoch of the separated 
signals into an appropriate stage using a set of discriminative 
features obtained from them. Through the hardware prototype 
and a one-month long user study, we demonstrated that the 
proposed LIBS was comparable to the existing dedicated sleep 
assessment system (i.e., PSG) in terms of accuracy.

Due to the structural variation across ear canals and over-
lapped characteristics of the EEG, EOG, and EMG signals, 
building LIBS is difficult because of three following key rea-
sons. (1) The brain signal is quite small in order of micro-
Volts (µV). Additionally, the human head anatomy shown in 
Figure 1(b) indicates that their sources are not too close to 
the location of LIBS placed in the ear canals to be sensed, 
especially in case of the weak brain source, (2) The charac-
teristics of those three biosignals are overlapped in both 
time and frequency domains. Moreover, their activation is 
random and possibly simultaneous during the monitor-
ing period, and (3) The signal quality is easily varied by the 
displacement of electrodes across device hookups and the 
variation of physiological body conditions across people. 
Consequently, our first challenge is to build sensors capable 
of providing a high level of sensitivity while recording the 
biosignals from afar and comfort while wearing the device. 
Our second challenge is then to provide a robust separation 
mechanism in the presence of multiple variances, which 
becomes a significant hurdle.

While addressing the above challenges to realizing LIBS, 
we make the following contributions through this work:

1.  Developing a light-weight and low-cost earplug-like 
sensor with highly sensitive and soft electrodes, the 
whole of which is comfortably and safely placed inside 
human ears to continuously measure the voltage poten-
tial of the biosignals in long term with high fidelity.

2.  Deriving and implementing a single-channel signal 
separation model, which integrates a process of learn-
ing source-specific prior knowledge for adapting the 
extraction of EEG, EOG, and EMG from the mixed in-
ear signal to suit the variability of the signals across 
people and recordings.

3.  Developing an end-to-end sleep staging system, which 
takes the input of three separated biosignals and auto-
matically determines the appropriate sleep stages, as a 
proof-of-concept of LIBS’s potential in reality.

4.  Conducting an over 30 day long user studies with eight 
subjects to confirm the feasibility and learn the usabil-
ity of LIBS.

2. LIBS’S SYSTEM OVERVIEW
In this section, we present an overall design of LIBS in order 
to achieve the EEG, EOG, and EMG signals individually from 
the in-ear mixed biosignal. Additionally, we provide a module 

Figure 2. LIBS architecture and its sleep staging application.
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resulted that copper is a hard material to be inserted into 
and placed inside the ear without harm. Oppositely, con-
ductive fabric is a good choice that neither harms the in-ear 
skin nor is broken while being squeezed. However, because of  
the weave pattern of its fibers, which cases a non-identical 
resistivity (19Ω/sq) on the surface, we further coat their sur-
face with many layers of thin pure silver leaves, which gives 
low and consistent surface resistance for providing reliable 
signals. Also, a very small amount of health-grade conduc-
tive gel is added. In Figure 2, the construction module shows  
the comprehensive structure of LIBS electrodes. Ultimately, we 
place the active and reference electrodes in two separate ear 
canals, hence intensify the potential of the signals by a dis-
tance increase. Finally, the recorded signal is transferred to an 
amplifier through shielded wires to prevent any external noise.

3.3. Microcontroller
In this prototype, we use a general brain-computer interface 
board manufactured by OpenBCI16 group to sample and dig-
itize the signal. The board is supplied by a battery source of 
6V for safety and configured at a 2kHz sampling rate and a 
24dB gain. The signal is stored in an on-board mini-SD card 
while recording and then processed offline in a PC.

4. NMF-BASED SIGNAL SEPARATION
Due to the limited cavity of the ear canal, the biosignal 
recorded by LIBS is inherently a single-channel mixture of 
at least four components including EEG, EOG, EMG sig-
nals, and unwanted noise. We assume that the mixed signal 
is a linear combination of aforementioned signals gener-
ated from a number of individual sources in the spectral 
domain,7 which we mathematically express in Equation (1).

� (1)

where si is the power spectrum of the three biosignals with 
their corresponding weight wi and ε represents noises.

Generally, the problem of separating original signals 
from their combinations generated by concurrent multi-
source activation has long been addressed for different 
systems. The classical example of this problem is the audi-
tory source separation problem, also called a cocktail party 
problem, where various algorithms have been developed 
to extract individual voices of a number of people talk-
ing simultaneously in a room. Additionally, the problem 
of decoding a set of received signals to retrieve the orginal 
signals transmitted by multiple antennas via Multi-Input 
and Multi-Output (MIMO)22 in wireless communication can 
also be another example. Although there exist mainstream 
techniques25 such as Principal Component Analysis (PCA), 

characteristics shared in some of stages, this module is chal-
lenging by an ability to (1) find the most informative and dis-
criminative features describing all three biosignals when 
they are used together and then (2) construct an efficient 
classifier to perform sleep staging. We introduce a classifi-
cation model that can automatic score the sleep after well 
trained. Firstly, we deploy an off-line training stage compos-
ing of three steps: feature extraction, feature selection, and 
model training. Specifically, a set of possible features cor-
responding to each of three separate signals are extracted. 
Next, a selection process is applied to choose features with 
a more discriminative process. Using a set of dominant 
features selected, the sleep stage classifier is trained with 
a measurement of similarity. Finally, the trained model is 
used in its second stage for on-line sleep stage classification.

3. IN-EAR MIXED SIGNAL ACQUISITION
In this section, we discuss the anatomical structure of 
human ears that leads to the custom design of LIBS sensor 
as well as its actual prototype using off-the-shelf electrical 
components.

3.1. Sensor materials
Extensive anatomical study of human ears shows that the 
form of ear canal is easy to be affected when the jaw moves.15 
More remarkably, a person can have asymmetry between his 
left and right ears.14 Beyond those special characteristics, to 
capture the good signals, it is important to eliminate a gap 
between the electrodes and human skin due to the nature of 
the ion current generated by the biosignals. Hence, LIBS sen-
sor needs to flexibly reshape itself, well contact to the skin, 
well fit different ear structures and types of muscle contrac-
tions, and comfortably be worn in long term. One possible 
approach is to personalize a mold. However, this approach 
entails high cost and time consume. Therefore, a commercial 
earplug with noise-cancelled and flexible wires are offered to 
form the sensor prototype. Specifically, we have augmented 
an over-the-counter sound block foam earplug for its base. 
The soft elastic material (or memory foam) of the earplug 
enables the sensor to reshape to its original form shortly after 
being squeezed or twisted under the strain to insert into the 
ear. This fundamental property of the foam earplug provides 
a comfortable and good fit as it allows the sensor to follow 
the shape of the inner surface in the ear canal. In addition, 
it not only supplies a stable contact between the electrodes 
and the in-ear skin but reduces the motion artifact caused by 
jaw motion as well. Moreover, using the earplug completely 
eliminate the personalization of the base regarding the canal 
size. As an additional bonus, the soft surface and the light-
weight property of the earplug make itself more convenient 
to be worn without much interference and to block out noise 
during sleep for our case study.

3.2. Electrode construction and placement
On the other hand, LIBS needs to possibly measure low- 
amplitude biosignals from a distance with high fidelity. Our 
method integrates several solutions into the hardware design to 
address this demand. We firstly tried different conductive 
materials as shown in Figure 3. However, our experiment 

Figure 3. Prototypes with different conductive materials.
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ease of implementation. While solving this equation, the 
template matrix taken from the learning process is used to 
initialize W. Hence, W is deformed to fit the in-ear signal 
acquired from that user at different nights.

Algorithm 1 Signal Separation Algorithm

  1:  Input:
  2:      IS - In-ear Signal
  3:      Wini - Spectral Template Matrix
  4:      ST - Segment Time
  5:  Output:
  6:       - Separated Signals
  7:
  8:   ← PreprocessSignal(IS);
  9:  X ← ComputePowerSpectrum( );
10:  Seg ← SegmentSignal(IS, ST);
11:  for i = 1 → sizeof(Seg) do
12:    Hini ← InitializeMatrixRandomly();
13:     ← IS_NMF(Segi);     
14:    VEEG(Segi) ← ;
15:    VEOG(Segi) ← ;
16:    VEMG(Segi) ← ;
17:   ← rescontructSignal(X, VEEG);
18:   ← rescontructSignal(X, VEOG);
19:   ← rescontructSignal(X, VEMG);

In this work, adapting the technique from Ref. Damon et al.,2 we 
specifically select the Itakura-Saito (IS) divergence dIS as a 
measure to minimize the error between the power spectrum 
of the original signal and its reconstruction from W and H. 
The IS divergence, in detail, is a limit case of the β-divergence 
introduced in Ref. Févotte and Idier,4 which is defined here

�
(4)

The reason is that a noteworthy property of the β-divergence 
(in which the IS divergence corresponds to the case β = 0) is 
its behavior w.r.t scale. Alternatively, IS divergence holds a 
scale-invariant property dIS(lx | ly) = dIS(x | y) that helps min-
imize the variation of the signals acquired from one person 
in different recordings. The IS divergence is given by,

� (5)

Hence, Algorithm 1 provides the whole process of sepa-
rating EEG, EOG, and EMG signals from the single-channel 
in-ear mixture using a per-user trained template matrix.

5. SLEEP STAGES CLASSIFICATION
Human sleep naturally proceeds in a repeated cycle of four 
distinct sleep stages: N1, N2, N3, and REM sleep. To study 
the sleep quantity and quality, the sleep stages are mainly 
identified by simultaneously evaluating three fundamental 

Independent Component Analysis (ICA), Empirical Mode 
Decomposition (EMD), Maximum Likelihood Estimation 
(MLE), and Nonnegative Matrix Factorization (NMF) built 
to solve the blind source separation problem, most of them 
require that (1) the number of collected channels is equal to 
or larger than the number of source signals (except NMF) and 
(2) the factorized components describing the source signal 
are known or selected manually. As a result, it is impossible 
to directly apply them in our work since their first constraint 
conflicts with the fact that LIBS has only one channel, which 
is fewer than the number of signals of interest (three signals).

To successfully address this challenge, we propose a novel 
source separation technique that takes advantage of NMF. 
However, there have existed two potential issues with a NMF-
based model that might degrade the quality of the decom-
posed signals. They include (1) the inherent non-unique 
estimation of the original source signals (ill-posed problem) 
caused by the non-convex solution space of NMF and (2) the 
variance of the biosignals on different recordings. To solve 
them, our proposed NMF-based model is combined with 
source-specific prior knowledge learnt in advance for each 
user through a training process. Figure 4 demonstrates the 
high-level overview of this process, which leverages two differ-
ent NMF techniques to learn source-specific information and 
to separate the mixing in-ear signal based on priory training.

Particularly, when a new user starts using LIBS, his 
groundtruth EEG, EOG, and EMG are shortly acquired using 
the gold-standard device (i.e., PSG) and fed into a single-
class Support Vector Machine (SVM)-based NMF technique 
(SVM-NMF)3 to build a personal spectral template matrix, 
called W, representing their basis patterns. Then, for any in- 
ear signal  recorded by LIBS, our trained model approxi-
mately decomposes its power spectrum X into two lower 
rank nonnegative matrices

�
(2)

in which X ∈ Rm×n comprises m frequency bins and n tem-
poral frames; W is calculated in advance and given; and H 
is the activation matrix expressing time points (positions) 
when the signal patterns in W are activated. Finding the best 
representative of both W and H is equivalent to minimizing 
a cost function defined by the distance between X and WH in 
Equation (3).

�
(3)

We solve Equation (3) using multiplicative update rules 
to achieve a good compromise between the speed and the 

Figure 4. Overview of signal separation process in LIBS.
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5.2. Feature selection
Although each extracted feature has the ability to partially clas-
sify biosignals, the performance of a classification algorithm 
can degrade when all extracted features are used to determine 
the sleep stages. Therefore, in order to select a set of relevant 
features among the extracted ones, we compute the discrimi-
nating power of each of them19 when they are used in combi-
nation. However, it is computationally impractical to test all 
of the possible feature combinations. Therefore, we adopt a 
procedure called Sequential Forward Selection (SFS)26 to iden-
tify the most effective combination of features extracted from 
our in-ear signal. With SFS, features are selected sequentially 
until the addition of a new feature results in no performance 
improvement in prediction. To further improve the efficiency 
of our selection method, we have considered additional crite-
ria for selecting features. In particular, we assigned a weight 
to each feature based on its classification capability and rel-
evance to other features. Subsequently, these weight factors 
are adjusted based on the classification error. Furthermore, 
a feature is added to the set of selected features if it not only 
improves the misclassification error but also is less redun-
dant given the features already selected. With this approach, 
we can efficiently rank discriminant features based on the 
intrinsic behavior of the EEG, EMG, and EOG signals.

5.3. Sleep stage classification
Various classification methods are proposed in the literature 
for similar applications and each has advantages and disad-
vantages. Some scholars11 have chosen the Artificial Neural 
Network (ANN) classification approach for sleep scoring. In 
spite of the ANN ability to classify untrained patterns, long 
training time and complexity for selection of parameters 
such as network topology. Moreover, since decision tree 
is easier to implement and interpret as compared to other 
algorithms, it is widely used for sleep stage classification.

Another classification method used for sleep stage iden-
tification is SVM. SVM is a machine learning method based 
on statistical learning theory. Since SVM can be used for 
large data sets with high accuracy rates, it has also been 
widely used by various studies18 to classify sleep stages. 
However, this approach suffers from long training time 
and difficulty to understand the learned function. Based 
on the existing comparative studies,19 the decision tree 
(and more generally random forest) classification methods 
have achieved the highest performance since the tree struc-
ture can separate the sleep stages with large variation. As 
an example, decision tree classifiers are flexible and work 
well with categorical data. However, overfitting and high 
dimensionality are the main challenges in decision trees. 
Therefore, we use an ensemble learning method for clas-
sification of in-ear signal. Particularly, we deploy random 
forest with twenty five decision trees as a suitable classifier 
for our system. This classifier is able to efficiently handle 
high dimensional attributes and it also reduces computa-
tional cost on large training data sets. The set of features 
selected through SFS are used to construct a multitude of 
decision trees at training stage to identify the correspond-
ing sleep stage for every 30sec segment of the biosignals in 
the classification stage.

measurement modalities including brain activities, eye move-
ments, and muscle contractions. In hospital, an expert can 
visually inspect EEG, EOG, and EMG signals collected from 
subjects during sleep and label each segment (i.e., a 30sec 
period) with the corresponding sleep stage based on known 
visual cues associated with each stage. Below we elaborate on 
each of aforementioned steps of our data analysis pipeline.

5.1. Feature extraction
The features selected for extraction are from a variety of cat-
egories as follows:

Temporal features. This category includes typical 
features used in the literature such as mean, variance, 
median, skewness, kurtosis, and 75th percentile, which 
can be derived from the time series. In sleep stage clas-
sification, both EOG and EMG signals are often ana-
lyzed in the time domain due to their large variation in 
amplitude and a lack of distinctive frequency patterns. 
Accordingly, based on our observations about these sig-
nals, we include more features that can distinguish N1  
from REM, which are often misclassified. In particular, we 
consider average amplitude that is significantly low for 
EMG while relatively higher for EOG during the REM stage. 
Also to capture the variation in EOG during different sleep 
stages, we consider the variance and entropy for EOG in 
order to magnify distinctions between Wakefulness, REM, 
and N1 stages.

Spectral features. These features are often extracted to 
analyze the characteristics of EEG signal because brain 
waves are normally available in discrete frequency ranges 
in different stages. By transforming the time series signal 
into the frequency domain in different frequency bands 
and computing its power spectrum density, various spec-
tral features can be studied. Here based on our domain 
knowledge about the EEG patterns in each sleep stage, we 
identify and leverage spectral edge frequencies to distin-
guish those stages.

Non-linear features. Bioelectrical signals show various 
complex behaviors with nonlinear properties. In details, since 
the chaotic parameters of EEG are dependent on the sleep 
stages,11 they can be used for sleep stage classification. The 
discriminant ability of such features is demonstrated through 
the measures of complexity such as correlation dimension, 
Lyapunov exponent, entropy, fractal dimension, etc.23

For this study, relied on the literature of feature-based 
EOG, EMG, and EEG classification,11 we consider the features 
listed in Table 1 from each of the aforementioned categories.

Table 1. List of features extracted from the biosignals.

Features  

Temporal features average amplitude, variance, 75th percentile,  
skewness, kurtosis

Spectral features absolute spectral powers
relative spectral powers
relative spectral ratio
spectral edge frequency

Non-linear features fractal dimension, entropy
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On the other hand, we conducted the following standard 
Brain-Computer Interaction (BCI) experiments to verify the 
occurrence of the EEG signal in LIBS’s recordings:

Auditory Steady-State Response (ASSR). This EEG para-
digm measures the response of human brain while modu-
lating auditory stimuli with specific frequency ranges.24 In 
this experiment, we applied auditory stimuli in the frequen-
cies of 40Hz in which each stimuli lasted for 30sec and was 
repeated three times with 20sec rest between them. Then, by 
looking at Figure 7, it is easy to recognize a sharp and domi-
nant peak at 40Hz produced during the 40Hz ASSR experi-
ment. Clearly, this result demonstrates the ability of LIBS 
to capture such the specific frequency in the in-ear mixed 
signal although the peak extracted from the gold standard 
electrodes was larger than that of LIBS electrode.

Steady-State Visually Evoked Potential (SSVEP). Similar to 
ASSR, SSVEP measures the brain wave responding to a visual 

6. EVALUATION
In this section, we first present the key results in proving 
the feasibility of LIBS to capture the usable and reliable bio-
signals, in which all EEG, EOG, and EMG is present. From 
the success of our proof-of-concept, we then show the per-
formance of our proposed separation algorithm for splitting 
those three signals without loss of information. Finally, we 
evaluate the usability of LIBS’s outputs through the perfor-
mance of the automatic sleep stage classification.

6.1. Experiment methodology
Beyond our LIBS prototype shown in Figure 5, we used a 
portable PSG device named Trackit Mark III supported by 
LifeLines Neurodiagnostic Systems Inc. company21 with 14 
EEG electrodes placed at the channel Fp1, Fp2, C3, C4, O1, 
and O2 (in accordance to the International 10–20 system) on 
the scalp, in proximity to the right and left outer cantus, and 
over the chin, which were all referenced to two mastoids, to 
collect the ground truth. This device individually acquires 
EEG, EOG, and EMG signals at 256Hz sampling rate and pre-
filtered them in the range of 0.1–70Hz.

6.2. Validation of signal presence
In this evaluation, we assess the presence of the signals of 
interest in the in-ear mixed signal measured by LIBS by com-
paring the recording with the groundtruth signals acquired 
from the gold-standard PSG channels. While the user wears 
both devices at the same time, we illustrate the feasibility of 
LIBS to produce the usable and reliable signals through dif-
ferent experiments.

We first examined if LIBS can capture the EMG signal by 
asking a subject to do two different activities for contract-
ing his facial muscles. Specifically, the subject kept his teeth 
remaining still and then grinding for 5sec and chewing for 
20sec continuously. This combination was done for four 
times. From Figure 6a, we noticed that our LIBS device could 
clearly capture those events reflecting the occurrence of the 
EMG signal.

Similarly, we asked the subject to look forward for 
20sec and then move his eyes to points pre-specified in 
four directions (i.e., left, right, up, and down) for 5sec. As 
a result, although the amplitude of the in-ear mixed sig-
nal is smaller than the gold-standard one, it still clearly 
exhibits the left and right movements of the eyes similar 
to the EOG signal channeled in the gold-standard device. 
As shown in Figure 6b, LIBS also has the ability to capture 
the horizontal and vertical eye movements as the reflec-
tion of EOG occurrence.

Figure 5. Demonstration of a sleep study and the first prototype of 
LIBS.
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Figure 6. The detection of (a) muscle activities and (b) eye 
movements from LIBS (top) and the gold standard EMG and EOG 
channels (bottom), respectively.
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Figure 7. The ASSR for 40Hz recorded from (a) LIBS and (b) the gold 
standard device at Channel C3 on scalp.

30 35 40 45 50
Frequency (Hz)

0

2

4

6

8

P
S

D
 (

V
2 /H

z)

×10–3

40Hz ASSR

(a) LIBS

30 35 40 45 50
Frequency (Hz)

40Hz ASSR

0

0.01

0.02

0.03

P
S

D
 (

V
2 /H

z)

(b) Gold standard electrode



 

NOVEMBER 2018  |   VOL.  61  |   NO.  11  |   COMMUNICATIONS OF THE ACM    163

by analyzing the occurrence of special frequencies (i.e., the 
delta brain wave) in the separated EEG biosignal during the 
sleep study.

Specifically, Figure 10a provides the spectrogram of a 30sec 
original in-ear mixed signal captured by LIBS during a sleep 
study and labeled as stage Slow-Wave Sleep (SWS) by the 
gold-standard device. In Figure 10b, the spectrogram of a cor-
responding 30sec ground-truth EEG signal is presented. By 
observing the second spectrogram, a delta brain wave in a 
frequency range lower than 4Hz is correctly found. However, 
the spectrogram in Figure 10a cannot show the detection 
of such the brain wave clearly. Its reason is that not only the 
delta brain wave exists but also other biosignals are added 
in this original signal. Finally, Figure 10c exhibits the spec-
trogram of the EEG signal separated from the original mixed 
signal by applying our proposed signal separation algorithm. 
Analyzing this figure proves that the separation model we 
propose has a capability of not only splitting the signals from 
the mixed one but keeping only the specific characteristics 
of the separated signal as well. Otherwise, the short appear-
ance of the delta brain wave in the decomposed signal can be 
explained by the fact that the location where LIBS is placed is 
far from the source of the signal. By that, the amplitude of the 
signal is highly reduced.

6.4. Sleep stage classification evaluation
To evaluate the performance of our proposed sleep staging 
method, we conducted a 38hrs of sleep experiments over 
eight graduate students (three females and five males) with 
an average age of 25 to evaluate the performance of the pro-
posed sleep stage classification system inputting the bio-
signals returned by LIBS. An full board Institutional Review 
Board (IRB) review was conducted and an approval was 
granted for this study. The participants were asked to sleep 
in a sleep lab while plugging LIBS into their ear canals and 
have a conventional PSG hook-up around their head simul-
taneously. After that, the Polysmith program17 was run to 
score the ground-truth signals into different sleep stages at 

stimuli at specific frequencies.12 Particularly, we created a 
blinking stimuli at 10Hz and played it for 20sec with three 
time repetition. Accordingly, the brain response in this SSVEP 
experiment comprehensibly presented as a dominant peak 
for LIBS and the gold standard on-scalp electrodes in Figure 8.

Alpha Attenuation Response (AAR). Alpha wave is a type 
of brain waves specified in the range of 8–13Hz. This brain 
wave is a sign of relaxation and peacefulness.1 In this experi-
ment, we asked the subject to completely relax his body 
while closing his eyes for 20sec and then open them for 
10sec in five consecutive times. As analyzing the recorded in-
ear mixed signal, Figure 9 shows that LIBS is able to capture 
the alpha rhythm from inside the ear. However, the detec-
tion of alpha rhythm in case of LIBS was not very clear. This 
can be due to the fact that the alpha waves were produced in 
frontal lobe that is in a distance from the ear location.

6.3. Signal separation validation
From the previous experiments, we proved that all of the EEG, 
EOG, and EMG signals appeared in the recordings of LIBS 
and were mixed in the original in-ear signal. We now show 
the result of our proposed NMF-based separation algorithm, 
which learns the underlying characteristics of gold stan-
dard EEG, EOG, and EMG signals individually and adapts its 
learned knowledge to provide the best decomposition from 
the mixed signal. In this evaluation, because the gold stan-
dard device (e.g., PSG device) cannot be hooked up in the ear 
canal to capture the same signal as our in-ear device does, 
similarity measures such as mutual information, cross-cor-
relation, etc. cannot be used to provide a numeric compari-
son between the separated and gold standard signals. We 
then demonstrate the performance of our proposed model 

Figure 9. The detection of alpha rhythms from (a) LIBS and (b) the 
gold standard device at Channel C4 on scalp.
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Figure 8. The SSVEP responses recorded from (a) LIBS and (b) the 
gold standard device at Channel O1 on scalp.
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off-the-shelf devices (e.g., MUSE) only capture the brain 
signal to tell how well users are meditating. Different from 
them, LIBS further looks at the eye and muscle signals to 
analyze the level of relaxation they have more accurately. As 
a result, LIBS promisingly helps improve the users’ medita-
tion performance.

Eating habit monitoring. Eating habits can provide criti-
cal evidences for various diseases.8 As LIBS can capture the 
muscle signal very clearly, such information can be useful 
to infer how often the users chew, how fast they chew, how 
much they chew, and what the intensity of their chewing 
is. From all of that, LIBS can then predict what foods they 
are eating as well as how much they are eating. As a result, 
LIBS can provide users guidance to avoid their bad habits by 
themselves or to visit a doctor if necessary.

7.2. Non-health applications
LIBS can benefit applications and systems on other domain 
such as improving hearing aid devices, improving driver’s 
safety, helping parents with orienting their child early on.

Autonomous audio steering. This application helps solve 
a classical problem in hearing aid, which is called cocktail 
party problem. As known, state-of-the-art hearing aid devices 
try to amplify the sounds coming from the area that has large 
amplitude, which is assumed as human voice, in a party. 
Consequently, the hearing aid will fail to support the wear-
ers if any group of people behind them is talking very loudly, 
which is not the right person they want to talk to. Using our 
technology, using the eye signal LIBS can capture, it will pos-
sibly detect the area that the users are paying their attention 
to. Furthermore, combining with their brain signal, LIBS 
can further predict how please the wearers are with the out-
put sound that their hearing aid is producing. With that in 
mind, LIBS can steer the hearing aid and improve its quality 
of amplification so that the hearing aid can provide the high-
quality sounds coming from the right source to the users.

Distraction and drowsiness detection. Distraction and 
drowsiness are very serious factors in driving. Specifically, 
if people feel drowsy, their brain signal will be in alpha 
state, their eyes will be closed, and their chin muscle tone 
will become relax.20 Also, it is easy to detect if people are dis-
tracted based on the localization of eye positions when we 
analyze the changes of the eye signal. Hence, LIBS with three 
separated brain, eye, and muscle signals should be able to 
determine the driver’s drowsiness level or distraction to fur-
ther send an alert for avoiding road accidents.

every 30sec segment. For all studies, the sleeping environ-
ment was set up to be quiet, dark, and cool.

Statistically, we extracted the features from 4313 30sec 
segments using the original mixed signal as well as three 
separated signals. Training and test data sets are randomly 
selected from the same subject pool. Figure 11 displays the 
results of the sleep stage classification in comparison to the 
hypnogram of the test data scores out of the gold standard 
PSG. From this, we observe that the dynamics of the hyp-
nogram is almost completely maintained in the predicted 
scores. Moreover, our result show that the end-to-end sleep 
staging system can achieve 95% accuracy on average.

We refer the readers to Ref. Nguyen et al.13 for more 
detailed validations of signal acquisition and separation, 
their comparison with the signals recorded by the gold- 
standard device, and our user study.

7. POTENTIALS OF LIBS
We envision LIBS to be an enabling platform for not only 
healthcare applications but also those from other domains. 
Figure 12 illustrates the eight potential applications includ-
ing in-home sleep monitoring, autism onset detection, 
meditation training, eating habit monitoring, autonomous 
audio steering, distraction and drowsiness detection, child’s 
interest assessment, and human-computer interaction. We 
discuss these exemplary applications below.

7.1. Healthcare applications
We propose three applications that LIBS can be extended to 
serve in healthcare: autism act-out onset detection, medita-
tion coaching, and eating habit monitoring.

Autism onset detection. Thanks to its ability to capture 
muscle tension, eye movements, and brain activities, LIBS 
has a potential to be an autism on-set detection and predic-
tion wearable. Particularly, people with autism can have very 
sensitive sensory (e.g., visual, auditory, and tactile) functions. 
When any of their sensory functions leads to an overload, their 
brain signal, facial muscle, and eye movement are expected to 
change significantly.5 We hope to explore this phenomenon 
to detect the relationship between these three signals and the 
on-set event from which a prediction model can be developed.

Meditation training. Meditation has a potential for 
improving physical and mental well-being when it is done 
in a right way. Hence, it is necessary to understand peo-
ple’s mindfulness level during the meditation to be able to 
provide more efficient instructions. Existing commercial 

Figure 11. A hypnogram of 30min data resulted by our classification algorithm.

Segment sequence number

SWS

N2

N1

REM

Wake

S
le

ep
 s

ta
ge

Proposed algorithm Ground truth

0 10 20 30 40 50 60



 

NOVEMBER 2018  |   VOL.  61  |   NO.  11  |   COMMUNICATIONS OF THE ACM    165

accuracy and usability. Further than an in-ear bio-sensing  
wearable, we view LIBS as a key enabling technology for con-
cealed head-worn devices for healthcare and communication 
applications, especially for personalized health monitoring,  
digital assistance, and the introduction of socially-aware 
human-computer interfaces.
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Child’s interest assessment. With LIBS, child’s interest 
assessment can be done less obtrusively and yield more 
accurate outcomes. Moreover, from that, the parents will 
be able to orient them accordingly so that they can learn what 
they like the most. Clinically, kids from the age of 0–2yrs 
don’t have the ability to express their interest. More pre-
cisely, the only way to express their interest is their cry-
ing. As a result, the conventional gold-standard device 
(i.e., PSG) is usually used to read their biosignals, which 
relatively reflect their interest in what they are allowed to 
do. However, it is not comfortable for them to wear and 
do activities during the assessment. Hence, by leveraging 
LIBS to read the signal from their ears and at the same 
time letting them play different sports or learn different 
subjects, LIBS should be able to infer what the level of 
their interest is with high comfort.

Human-computer interaction. In a broader context, LIBS 
can be used as a form of Human Computer Interaction (HCI), 
which can especially benefit users with disability. In stead of 
using only the brain signal as found in many HCI and brain-
to-computer systems today, LIBS can combine the informa-
tion extracted from the three separated signals to enrich 
commands the user can build to interact with the computer 
in a more reliable way. This gives users more choices for 
integration with computing systems in a potentially more 
precise and convenient manner.

8. CONCLUSION
In this paper, we enabled LIBS, a sensing system worn 
inside human ear canals, that can unobtrusively, comfort-
ably, and continuously monitor the electrical activities of 
human brain, eyes, and facial muscles. Different from exist-
ing hi-tech systems of measuring only one specific type 
of the signals, LIBS deploys a NMF-based signal separa-
tion algorithm to feasibly and reliably achieve three indi-
vidual signals of interest. Through one-month long user 
study of collecting the in-ear signals during sleep and scor-
ing them into appropriate sleep stages using a prototype, 
LIBS itself demonstrated a promising comparison to the 
existing dedicated sleep assessment systems in term of 

Figure 12. Potential applications of LIBS.
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