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Abstract 

Thermal comfort of building occupants is a major criterion in evaluating the 
performance of building systems. It is also a dominant factor in designing and 
optimizing building’s operation. However, existing thermal comfort models, such as 
Finger’s model currently adopted by ASHRAE Standard 55, rely on factors that 
require bulky and expensive equipment to measure. This paper attempts to take a 
radically different approach towards measuring the thermal comfort of building 
occupants by leveraging the ever-increasing capacity and capability of mobile and 
wearable devices. Today’s commercially-off-the-shelf (COST) wearable devices can 
unobtrusively capture a number of important parameters that may be used to measure 
thermal comfort of building occupants, including ambient air temperature, relative 
humidity, skin temperature, perspiration rate, and heart rate. This research evaluates 
such opportunities by fusing traditional environmental sensing data streams with 
newly available wearable sensing information. Furthermore, it identifies challenges 
for using existing wearable devices and to developing new models to predict human 
thermal comfort. Findings from this exploratory study identify the inaccuracy of 
sensors in cellphones and wearable as a challenge, yet one which can be improved 
using customized wearables. The study also suggests there exists a high potential for 
developing new models to predict human thermal sensation using artificial neural 
networks and additional factors that can be individually, unobtrusively, and 
dynamically measured using wearables.  
 
INTRODUCTION 

Thermal comfort of building occupants is a major criterion in evaluating the 
performance of building systems and a dominant factor in designing and optimizing 
buildings operation. In the United States, buildings are reported to consume 40% of 
the total energy consumption while commercial buildings are reported to consume 
50% of all buildings’ energy demand. Out of the 20% energy consumed by 
commercial buildings, the Heat Ventilation and Air Conditioning (HVAC) systems 
consume 43% of buildings’ energy demand (U.S. Department of Energy 2012). 
Studies have shown that improving thermal comfort of building occupants can lead to 
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improvements in important areas, including occupant productivity and well-being 
(Frontczak et al. 2012). Furthermore, Americans spend more than 90% of their time 
inside buildings (U.S. Environmental Protection Agency 2012). That highlights the 
importance of developing tools and devices that can collect data regarding occupants 
to maximize their comfort while minimizing building energy demands. Wearable 
devices present a unique opportunity for collecting individualized human sensation 
data such as skin temperature and heart rate in addition to sensor data documenting 
indoor environmental conditions such as air temperature and relative humidity.  

Several models have been developed over past decades to understand and 
measure the thermal comfort of building occupants. A seminal model was developed 
by Fanger in the 1970s (Fanger 1970). The index called Predicted Mean Vote (PMV) 
represents the average thermal sensation of a large group of people in a space. The 
PMV model is currently adopted by the American Society of Heating, Refrigerating, 
and Air-Conditioning Engineers (ASHRAE).  The existing ASHRAE standard 
requires at least 80% of occupants feel thermally satisfied in the design of buildings 
(ASHRAE Standard 55 2013; Charles 2009; Fanger 1970). Another model, 
developed by the Institute for Environmental Research at Kansas State University, 
showed statistical correlation between level of comfort, temperature, humidity, 
gender, and exposure duration and yielded an equation to measure PMV (Rohles 
1971). Another thermal sensation model was developed to predict local and overall 
sensations and comfort based on local skin temperatures and core temperature (Zhang 
et al. 2004). Recently, a Human Thermal Model (HTM) was developed to estimate 
human thermal sensation and comfort based on simulation of human body which 
allowed more detailed thermal sensation and estimation of comfort levels better than 
the traditional model (Holopainen 2012; Zhang et al. 2004).  

Several studies have been developed to understand occupant behavior and 
thermal comfort as well as their impact on building energy consumption including 
evaluating the accuracy of occupancy modeling using various ambient sensor 
variables and identifying the contribution of each sensor variable on the modeling 
results which showed that effective vacancy accounts for substantial portion of the 
operational hours that has high potential for energy savings (Yang et al. 2013); and 
understanding occupant behavior in an office building by sensing daily activities and 
their interaction with building energy devices which identified 38% potential energy 
savings due to turning off appliances when not in use (Kavulya and Becerik-Gerber 
2012). 

A number of additional studies have been conducted to investigate the use of 
wearable devices, wireless sensors, and mobile applications for identifying thermal 
comfort of building occupants and their location over time. A recent study developed 
a battery-powered indoor environment sensor to recognize activity type and location 
based on environmental measurements. The environment sensor collects a set of 
environmental variables including temperature, humidity, ambient light, sensor 
orientation, and motion detection and can detect eight typical activities, including 
sitting in lab / cubicle, indoor walking / running, resting after physical activity, 
climbing stairs, taking elevators, and outdoor walking. The developed device is 
designed to provide easily deployable sensing infrastructure that can operate for years 
in a smart buildings or be wearable and portable. The developed device showed that 
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fusion of environmental sensing along with acceleration can achieve classification 
accuracy up to 99.13% (Jin et al. 2014). Another study investigated the use of 
wireless system to compute thermal comfort in indoor environments. This system 
consists of a central control unit and end devices which interface with humidity 
sensors, inbuilt temperature sensors, light sensors, and accelerometers. The end-
device periodically reports data to a coordinator and based on the collected data, this 
system calculates the PMV that intermittently represents thermal comfort index. It 
should be noted that the wireless sensors in this study did not measure mean radiant 
temperature and air velocity (Aswathanarayanajois 2013). Another system was 
developed to improve thermal comfort for Ambient Assisted Living (AAL) by 
continuously monitoring indoor environmental parameters that lead to an accuracy of 
±0.1 of PMV for multiple positions or occupants in a room. The developed system 
can be integrated with building management systems to adjust the indoor 
environment to required comfort level. Input parameters of the system include room 
geometry and personal parameters of clothing levels and metabolic rate. The system 
uses infrared sensors to automatically scan the surfaces inside a room and identify 
their temperature. The air temperature and relative humidity are measured in a single 
point with a separate sensor. After the room interior surface temperatures 
measurement, the mean radiant temperature is determined at time t for different 
subjects in the room. Accordingly, PMV can be calculated and the indoor 
environment can be adjusted to satisfy comfort levels of the room subjects (Gian 
Marco Revel et al. 2014).  Finally, on-going research seeks to continuously record a 
user's thermal comfort to support the development of an Adaptive Wearable Thermal 
Comfort System (Chin 2015). Additionally, a mobile application called “Comfy” is 
commercially available and allows building occupants to manually adjust 
temperatures in their surrounding by connecting cell phones to building systems 
(Comfy 2015). 

Despite the significant contribution of the aforementioned models and 
research, there is limited research on using wearable devices to measure and monitor 
thermal comfort of building occupants while tracking building occupants to minimize 
building energy demands. Furthermore, traditional thermal comfort models such as 
the Fanger’s model currently adopted by ASHRAE standard 55, is applicable only to 
steady-state and uniform thermal environments. Additionally, traditional models do 
not account for individualized factors that have been shown in a number of studies to 
correlate to personnel thermal comfort, including gender, age, Body Mass Index 
(BMI), and fitness (Djamila 2012; Karjalainen 2007; Tuomaala et al. 2013). 
Accordingly, none of the existing systems and models are capable of passively and 
accurately using individual sensation to predict thermal comfort in real-time using an 
unobtrusive sensing device, which can be used to create smart building systems that 
dynamically adjust the indoor conditions according to the comfort of  individual 
building occupants. 
 
RESEARCH OBJECTIVE 

The objective of this exploratory research is to investigate the feasibility of 
using wearable devices to measure and monitor thermal comfort of building 
occupants. Recent technologies of wearable devices such as wristband devices can 
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capture a number of important parameters that can be used to measure thermal 
comfort of building occupants, including ambient air temperature, relative humidity, 
skin temperature, perspiration rate, and heart rate. Fusing traditional environmental 
sensing data with newly available wearable sensing information can be used to (1) 
create new models for measuring human thermal sensation including physiological 
signals and factors not considered in existing models such as age, gender, and BMI; 
(2) develop new metrics to provide accurate and meaningful feedback to building 
owners and operators regarding aggregate comfort levels in order to identify the 
optimal trade-off between building comfort and building operation efficiency, and (3) 
develop thermal comfort report card that can generate scores for buildings based on 
the thermal satisfaction of building occupants (Abdallah et al. 2015). This research 
focuses on investigating the use of wearable device and identifying challenges for 
fusing wearable devices into existing models to measure, monitor, and evaluate 
thermal comfort of building occupants to lead to the aforementioned outcomes.  
 
METHODOLOGY 

The authors conducted a pilot study to investigate the feasibility of using 
wearable devices to measure thermal comfort. The pilot study focused on (1) testing a 
custom mobile application in collecting data of indoor environmental conditions and 
physiological signals, (2) identifying the accuracy of the collected data using 
wearable devices, and (3) studying the feasibility of estimating or calculating PMV 
index based on the collected data of indoor environmental conditions and 
physiological signals. The pilot study was conducted on August 20th, 2015 in a 
conditioned laboratory at University of Colorado Denver for two hours within 
varying indoor environmental conditions. Two Construction Engineering and 
Management faculty, one Computer Science faculty and graduate student 
collaborated to participate in the experiment using four cellphones with the developed 
application installed, four Basis wristband devices (BASIS), thermal comfort 
equipment and an iBeacon. The experiment took place in a laboratory space, as 
shown in Figure 1. Three additional iBeacons were placed in locations around the 
floor of the building. Study participants were periodically scheduled to move around 
the building (outside of the laboratory) for 5 minutes during the experiment to 
identify if the cellphones are able to identify their locations. A small heater was 
placed in the laboratory to change the temperature during the experiment, also shown 
in Figure 1.     

 

Construction Research Congress 2016 943

© ASCE

 Construction Research Congress 2016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ol

or
ad

o 
U

ni
ve

rs
ity

 a
t B

ou
ld

er
 o

n 
03

/0
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



col
inte
acti
min
to c
col
and
of p
env
Fin
pro
tem

 
Nex
stud
the 
auth
pre

1

Fig

A mobi
lect and agg
ervals. In ad
ivity and ass
nutes via the
collect air te
lect skin tem

d relative hu
participants 
vironmental 
nally, and in 
obes shown i
mperature, air

Figure 2. M
conditio

xt, the PMV
dy using dat
clothing an

hors investi
dict thermal
) Data smo

Moreover

ure 1. Parti

ile applicatio
gregate data
ddition, user
sign a comfo
eir cell phon
emperature a
mperature, h
umidity data.
with no clot
conditions a
parallel, the

in Figure 1, 
r velocity, ai

Mobile appli
ons and phy

V index for e
ta recorded u
nd activities
igated how 
l comfort.  H
oothing and
r, the differe

icipants and

on was deve
a from cell 
s were prom

ort level usin
nes, as shown
and relative h
eart rate, an
.  For this e
thing occlud
and physiolo
ermal comfo
were used, i
ir temperatu

ication docu
ysiological si

each individ
using traditi
 levels reco
data collect

However, this
d alignment
ence in the 

d equipment

eloped, depi
phone and w

mpted by the
ng 7-point sc
n in Figure 
humidity da

nd skin cond
xperiment, w

ding the wea
ogical signa
ort equipmen
in some case

ure and relati

umenting re
ignals from

dual was calc
ional therma
orded by the
ted using w
s requires tw
:  The dat
sampling ra

t layout for

icted in Fig
wearable se
e application
cale of the PM
2.c.  Cell ph

ata.  Wearab
ductivity alon
wearables w

arable. The r
als were reco
nt consisting
es redundant
ive humidity

eal-time ind
m cell phones

culated for t
al comfort eq
e mobile ap

wearable dev
wo additiona
ta had fluct
ate of devic

 pilot study

gure 2, to au
ensors on th
n to manuall
MV index e
hone sensors
le sensors w
ng with air t

were worn on
recordings of
oded with ti
g of the data
tly, to log m

y in the space

 
door environ
s and weara

the duration 
quipment in 

pplication.  F
vices could 
l methods: 
tuations due
es makes th

 
y 

utomatically 
hirty second 
ly select an 
very fifteen 
s were used 

were used to 
temperature
n the wrists 
f the indoor 
ime stamps. 
a logger and 
mean radiant 
e.  

nmental 
ables 

of the case 
addition to 

Finally, the 
be used to 

e to noise. 
he collected 

Construction Research Congress 2016 944

© ASCE

 Construction Research Congress 2016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ol

or
ad

o 
U

ni
ve

rs
ity

 a
t B

ou
ld

er
 o

n 
03

/0
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



2

In
co
w
si

A 
Neu
inp
(Ne
 
AN

ana
usin
The
and
by 
the 
sen
test
and
con
tem
Fig

data asyn
represente
Specifical
files were
comfort e

) Machine 
statistical
be used to
are gener
informatio
be tuned 
inputs an
Stergiou a

n this resea
orrelation o

wearable dev
ignals.  

NeuroSolut
uroSolutions
ut paramete
euroSolution

NALYSIS 
The dat

alysis. Air te
ng three dev
e collected d
d relative hu
the manufac
research.  

nsors and the
t cell phones
d relative hu
nditions vari
mperature an
gure 4). Acc

nchronous. B
ed more cl
lly, the data
e smoothed b
equipment ba
learning tec
 learning mo
o estimate o
rally present
on among e
based on tr

nd capable o
and Sigano 1
arch, as sho
f an estima
vice, includ

Figure 3

tions Infini
s Infinity us
ers with a d
ns 2015). 

ta collected 
emperature a
vices- cell p
data showed 
umidity. The
cture, and, it

The author
ermal comfo
s were place

umidity instr
ied. Results

nd relative hu
cordingly, th

By applying
learly and a
a collected b
based on five
ased on a on
chnique: Art
odels in mac
r calculate a

ted as system
each other. T
raining proc
of learning 
1989).  
own in Figu
ated PMV in
ding indoor 

3. Layout of

ity tool w
ses 44 functi
desired outp

for each pa
and relative 
hones, wear
variations a

e thermal co
ts data, there
rs performe

ort equipmen
ed side by si
rument prob
 of this ana
umidity acro
he authors 

g these tech
all the data
by the mobi
e-minute int

ne-minute ba
tificial Neur
chine learnin
an output rel
ms of interc
The connecti
cess which a

to solve pr

ure 3, an A
ndex to inpu

environmen

f Artificial N

was used 
ions to analy

put and to i

articipant w
humidity w

rable device
across device
omfort equip
efore, was c

ed a separat
nt. For this t
ide on the ta
e for an hou
alysis revea
oss all devic
concluded 

hniques, the
a are match
ile applicati
tervals and a
asis.  
ral Networks
ng and cogn
lative to a nu
connected ne
ion have nu
allow neura
roblems (Kr

ANN was c
uts that can
ntal conditi

Neural Netwo

to process 
yze the corr
identify the 

was organize
were measur
s, and therm
es when me

pment had b
considered to
te analysis 
test, as show
able along w
ur, while the

aled discrepa
ces even aft
that sensors

e shape of 
hed correctl
ion and writ
aligned with 

s ANNs is a
nitive science
umber of inp
eurons whic
umeric weigh
al networks 
rose and Sm

created to e
n be measur
ions and ph

 
orks 

the colle
relation of a

best predic

ed and summ
red for each
mal comfort 
easuring air t
been recently
o be “groun
comparing 

wn in Figure
with the air t
e indoor env
ancies in m
ter data smo
s both cell 

the data is 
ly in time.
tten to .csv 
the thermal 

a branch of 
e which can 
puts. ANNs 
h exchange 
hts that can 
to adapt to 
magt 1996; 

valuate the 
red using a 
hysiological 

ected data. 
a number of 
ction model 

marized for 
h participant 

equipment. 
temperature 
y calibrated 

nd truth” for 
cell phone 

e 4, the four 
temperature 
vironmental 

measured air 
oothing (see 

phone and 

f

f

Construction Research Congress 2016 945

© ASCE

 Construction Research Congress 2016 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ol

or
ad

o 
U

ni
ve

rs
ity

 a
t B

ou
ld

er
 o

n 
03

/0
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



wearable devices lacked a degree of accuracy and will require additional testing and 
calibration in the future. Nevertheless, findings suggest the proposed method is 
feasibility and could become practical once better sensing techniques are available. 

 

 
Figure 4. Cell phone sensor accuracy across air temp. and relative humidity 

Next the authors organized and summarized the pilot study data collected for 
each of the participants. As shown in Figure 5 for two participants, seven data 
streams captured using both wearable sensors and stationary thermal comfort 
equipment were graphed, along with an overlay of the aligned PMV index. As 
previously discussed, the PMV index was calculated using thermal comfort 
equipment sensors and user inputs regarding clothing and activity level.  
 

 
Figure 5. Sample summary of data collected for two participants  

Analysis of the data at this scale, did not immediately reveal significant 
patterns. It is possible to observe, however, that several discontinuities occurred in the 
data collected using the wearables. As noted by the participants during the pilot test, 
the wearable devices did not always maintain good contact with the skin’s surface 
due primarily to sizing issues. 

To further study the feasibility of using wearable devices to measure thermal 
comfort of building occupants, the collected data was analyzed as inputs and using 
ANN to calculate PMV index. Analyses of two data sets were performed using 
NeuroSolutions Infinity to predict PMV values based on a number of input 
parameters. In the first analysis, ANN used a dataset consisting of skin temperature, 

a) Participant A b) Participant B 

One hour data analysis 
of air temperature and 
relative humidity 

(a) Temperature Measurements (b) Relative Humidity Measurements 
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heart rate, and respiration rate to predict the values of PMV. The results of the best 
model in the first analysis showed 0.95 correlation between 16 inputs and PMV, as 
shown in Figure 6 (a). In the second analysis, air temperature and relative humidity 
data were added to the dataset. Therefore, in the second analysis ANN used a dataset 
consisting of skin temperature, heart rate, respiration rate, air temperature and relative 
humidity to predict the values of PMV. The results of the best model in the second 
analysis showed 0.999 correlation between 5 inputs and PMV, as shown in Figure 6 
(b). In this case, the correlation provides a maximum absolute error of 0.09 PMV and 
root mean square error of 0.023 PMV. The five input parameters of the best model 
were identified as air temperature, square root of the summation of perspiration and 
air temperature, summation of perspiration and relative humidity, skin temperature, 
and heart rate with a contribution to PMV index of 28.1%, 27.9%, 19.2%, 12.8%, and 
12.1%, respectively. It should be noted that for both analyses, the tool used 75% of 
the data (244 rows) for training the models, 20% of the data (64 rows) for validating 
the modes, and 5% of the data (17 rows) for evaluating the models performance. 
 

 
Figure 6. Analysis of data collection of wearable devices to calculate PMV index  

DISCUSSION 
Initial findings of this study are promising and merit further research.  

Specifically, need exists to increase the suitability of wearables to support thermal 
comfort assessment. Today’s off-the-shelf wearables contain sensors that run at high 
sampling rates (e.g. 100Hz), designed mainly for activity tracking, health monitoring, 
and purposes other than thermal comfort evaluation. This design decision is one of 
the reasons wearable devices exhaust their battery quickly. In most cases, these 
sampling rates are one to two orders of magnitude higher than needed for comfort 
evaluation purposes. On the other hand, the sensors’ reliability is low and the 
accuracy fluctuates. In response, we propose to explore a set of sensing algorithms, 
techniques, designs, and optimizations to increase the suitability of wearable for 
thermal comfort assessment. We will customize existing sensors to adjust sampling 
frequency and sensitivity level, thereby increasing accuracy and saving energy at the 
same time. 

Initial findings identified a model that has a 0.999 correlation to the current 
PMV model using inputs that can be unobtrusively and dynamically measured with 
wearables. In contrast, the current model requires cumbersome (expensive, 
nonspecific) equipment to assess. Using wearables to estimate PMV will not only 

(a) ANN Model 1 (b) ANN Model 2 
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address problematic data collection, but may also extend the existing PMV model by 
providing opportunities for generating location-specific, adaptive and individual 
thermal comfort predictions.   

Finally, initial findings highlight opportunities to eventually develop new 
metrics (and, eventually, standards) for assessing thermal comfort across buildings.  
The authors have plans to develop a thermal comfort report card that can generate 
scores for buildings based on the thermal satisfaction of building occupants as 
aggregated across spaces (Abdallah et al. 2015). Eventual outcomes could include 
helping building owners and operators evaluate and compare thermal comfort 
performance, to identify areas that may require improvements, and to create the 
opportunity to simultaneously optimize for energy and thermal comfort performance. 
 
CONCLUSION 

Thermal comfort of building occupants is a major criterion in designing 
buildings, evaluating their operation performance, and optimizing their energy usage. 
This paper studied the feasibility of using wearable devices to measure and monitor 
thermal comfort of building occupants. A mobile application was developed to collect 
data of building occupants using sensors in cell phones and wearable devices, 
including location, air temperature, relative humidity, skin temperature, heart rate, 
and perspiration rate. A pilot case study of four participants was performed to (1) test 
the developed mobile application in collecting data of indoor environmental 
conditions and physiological signals, (2) identify the accuracy of the collected data 
using wearable devices, and (3) study the feasibility of predicting PMV index based 
on the collected data of indoor environmental conditions and physiological signals 
using wearable devices. Calibrated thermal comfort equipment was used to establish 
“ground truth” PMV estimates for the study. Testing showed variation in the accuracy 
of cell phone and wearable device sensors. Artificial Neural Networks (ANNs) were 
used to study the feasibility of predicting PMV index using data that can be collected 
using wearable devices. Results of ANNs analysis showed 0.999 correlation with 
maximum root mean square error of 0.023 PMV. The input parameters of the best 
model were identified as air temperature, square root of the summation of 
perspiration and air temperature, summation of perspiration and relative humidity, 
skin temperature, and heart rate with contribution to PMV index of 28.1%, 27.9%, 
19.2%, 12.8%, and 12.1%, respectively. These are promising results and suggest 
significant potential for creating new models that can predict PMV index using 
parameters that can be measured using wearable devices. However, existing sensors 
in wearable devices need to be improved and further customized to increase their 
accuracy and reliability in order to facilitate such predictions.  
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