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Abstract

Thermal comfort of building occupants is a major criterion in evaluating the
performance of building systems. It is also a dominant factor in designing and
optimizing building’s operation. However, existing thermal comfort models, such as
Finger’s model currently adopted by ASHRAE Standard 55, rely on factors that
require bulky and expensive equipment to measure. This paper attempts to take a
radically different approach towards measuring the thermal comfort of building
occupants by leveraging the ever-increasing capacity and capability of mobile and
wearable devices. Today’s commercially-off-the-shelf (COST) wearable devices can
unobtrusively capture a number of important parameters that may be used to measure
thermal comfort of building occupants, including ambient air temperature, relative
humidity, skin temperature, perspiration rate, and heart rate. This research evaluates
such opportunities by fusing traditional environmental sensing data streams with
newly available wearable sensing information. Furthermore, it identifies challenges
for using existing wearable devices and to developing new models to predict human
thermal comfort. Findings from this exploratory study identify the inaccuracy of
sensors in cellphones and wearable as a challenge, yet one which can be improved
using customized wearables. The study also suggests there exists a high potential for
developing new models to predict human thermal sensation using artificial neural
networks and additional factors that can be individually, unobtrusively, and
dynamically measured using wearables.

INTRODUCTION

Thermal comfort of building occupants is a major criterion in evaluating the
performance of building systems and a dominant factor in designing and optimizing
buildings operation. In the United States, buildings are reported to consume 40% of
the total energy consumption while commercial buildings are reported to consume
50% of all buildings’ energy demand. Out of the 20% energy consumed by
commercial buildings, the Heat Ventilation and Air Conditioning (HVAC) systems
consume 43% of buildings’ energy demand (U.S. Department of Energy 2012).
Studies have shown that improving thermal comfort of building occupants can lead to
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improvements in important areas, including occupant productivity and well-being
(Frontczak et al. 2012). Furthermore, Americans spend more than 90% of their time
inside buildings (U.S. Environmental Protection Agency 2012). That highlights the
importance of developing tools and devices that can collect data regarding occupants
to maximize their comfort while minimizing building energy demands. Wearable
devices present a unique opportunity for collecting individualized human sensation
data such as skin temperature and heart rate in addition to sensor data documenting
indoor environmental conditions such as air temperature and relative humidity.

Several models have been developed over past decades to understand and
measure the thermal comfort of building occupants. A seminal model was developed
by Fanger in the 1970s (Fanger 1970). The index called Predicted Mean Vote (PMV)
represents the average thermal sensation of a large group of people in a space. The
PMV model is currently adopted by the American Society of Heating, Refrigerating,
and Air-Conditioning Engineers (ASHRAE). The existing ASHRAE standard
requires at least 80% of occupants feel thermally satisfied in the design of buildings
(ASHRAE Standard 55 2013; Charles 2009; Fanger 1970). Another model,
developed by the Institute for Environmental Research at Kansas State University,
showed statistical correlation between level of comfort, temperature, humidity,
gender, and exposure duration and yielded an equation to measure PMV (Rohles
1971). Another thermal sensation model was developed to predict local and overall
sensations and comfort based on local skin temperatures and core temperature (Zhang
et al. 2004). Recently, a Human Thermal Model (HTM) was developed to estimate
human thermal sensation and comfort based on simulation of human body which
allowed more detailed thermal sensation and estimation of comfort levels better than
the traditional model (Holopainen 2012; Zhang et al. 2004).

Several studies have been developed to understand occupant behavior and
thermal comfort as well as their impact on building energy consumption including
evaluating the accuracy of occupancy modeling using various ambient sensor
variables and identifying the contribution of each sensor variable on the modeling
results which showed that effective vacancy accounts for substantial portion of the
operational hours that has high potential for energy savings (Yang et al. 2013); and
understanding occupant behavior in an office building by sensing daily activities and
their interaction with building energy devices which identified 38% potential energy
savings due to turning off appliances when not in use (Kavulya and Becerik-Gerber
2012).

A number of additional studies have been conducted to investigate the use of
wearable devices, wireless sensors, and mobile applications for identifying thermal
comfort of building occupants and their location over time. A recent study developed
a battery-powered indoor environment sensor to recognize activity type and location
based on environmental measurements. The environment sensor collects a set of
environmental variables including temperature, humidity, ambient light, sensor
orientation, and motion detection and can detect eight typical activities, including
sitting in lab / cubicle, indoor walking / running, resting after physical activity,
climbing stairs, taking elevators, and outdoor walking. The developed device is
designed to provide easily deployable sensing infrastructure that can operate for years
in a smart buildings or be wearable and portable. The developed device showed that
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fusion of environmental sensing along with acceleration can achieve classification
accuracy up to 99.13% (Jin et al. 2014). Another study investigated the use of
wireless system to compute thermal comfort in indoor environments. This system
consists of a central control unit and end devices which interface with humidity
sensors, inbuilt temperature sensors, light sensors, and accelerometers. The end-
device periodically reports data to a coordinator and based on the collected data, this
system calculates the PMV that intermittently represents thermal comfort index. It
should be noted that the wireless sensors in this study did not measure mean radiant
temperature and air velocity (Aswathanarayanajois 2013). Another system was
developed to improve thermal comfort for Ambient Assisted Living (AAL) by
continuously monitoring indoor environmental parameters that lead to an accuracy of
+0.1 of PMV for multiple positions or occupants in a room. The developed system
can be integrated with building management systems to adjust the indoor
environment to required comfort level. Input parameters of the system include room
geometry and personal parameters of clothing levels and metabolic rate. The system
uses infrared sensors to automatically scan the surfaces inside a room and identify
their temperature. The air temperature and relative humidity are measured in a single
point with a separate sensor. After the room interior surface temperatures
measurement, the mean radiant temperature is determined at time t for different
subjects in the room. Accordingly, PMV can be calculated and the indoor
environment can be adjusted to satisfy comfort levels of the room subjects (Gian
Marco Revel et al. 2014). Finally, on-going research seeks to continuously record a
user's thermal comfort to support the development of an Adaptive Wearable Thermal
Comfort System (Chin 2015). Additionally, a mobile application called “Comfy” is
commercially available and allows building occupants to manually adjust
temperatures in their surrounding by connecting cell phones to building systems
(Comfy 2015).

Despite the significant contribution of the aforementioned models and
research, there is limited research on using wearable devices to measure and monitor
thermal comfort of building occupants while tracking building occupants to minimize
building energy demands. Furthermore, traditional thermal comfort models such as
the Fanger’s model currently adopted by ASHRAE standard 55, is applicable only to
steady-state and uniform thermal environments. Additionally, traditional models do
not account for individualized factors that have been shown in a number of studies to
correlate to personnel thermal comfort, including gender, age, Body Mass Index
(BMI), and fitness (Djamila 2012; Karjalainen 2007; Tuomaala et al. 2013).
Accordingly, none of the existing systems and models are capable of passively and
accurately using individual sensation to predict thermal comfort in real-time using an
unobtrusive sensing device, which can be used to create smart building systems that
dynamically adjust the indoor conditions according to the comfort of individual
building occupants.

RESEARCH OBJECTIVE

The objective of this exploratory research is to investigate the feasibility of
using wearable devices to measure and monitor thermal comfort of building
occupants. Recent technologies of wearable devices such as wristband devices can
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capture a number of important parameters that can be used to measure thermal
comfort of building occupants, including ambient air temperature, relative humidity,
skin temperature, perspiration rate, and heart rate. Fusing traditional environmental
sensing data with newly available wearable sensing information can be used to (1)
create new models for measuring human thermal sensation including physiological
signals and factors not considered in existing models such as age, gender, and BMI;
(2) develop new metrics to provide accurate and meaningful feedback to building
owners and operators regarding aggregate comfort levels in order to identify the
optimal trade-off between building comfort and building operation efficiency, and (3)
develop thermal comfort report card that can generate scores for buildings based on
the thermal satisfaction of building occupants (Abdallah et al. 2015). This research
focuses on investigating the use of wearable device and identifying challenges for
fusing wearable devices into existing models to measure, monitor, and evaluate
thermal comfort of building occupants to lead to the aforementioned outcomes.

METHODOLOGY

The authors conducted a pilot study to investigate the feasibility of using
wearable devices to measure thermal comfort. The pilot study focused on (1) testing a
custom mobile application in collecting data of indoor environmental conditions and
physiological signals, (2) identifying the accuracy of the collected data using
wearable devices, and (3) studying the feasibility of estimating or calculating PMV
index based on the collected data of indoor environmental conditions and
physiological signals. The pilot study was conducted on August 20", 2015 in a
conditioned laboratory at University of Colorado Denver for two hours within
varying indoor environmental conditions. Two Construction Engineering and
Management faculty, one Computer Science faculty and graduate student
collaborated to participate in the experiment using four cellphones with the developed
application installed, four Basis wristband devices (BASIS), thermal comfort
equipment and an iBeacon. The experiment took place in a laboratory space, as
shown in Figure 1. Three additional iBeacons were placed in locations around the
floor of the building. Study participants were periodically scheduled to move around
the building (outside of the laboratory) for 5 minutes during the experiment to
identify if the cellphones are able to identify their locations. A small heater was
placed in the laboratory to change the temperature during the experiment, also shown
in Figure 1.
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Figure 1. Participants and equipment layout for pilot study

A mobile application was developed, depicted in Figure 2, to automatically
collect and aggregate data from cell phone and wearable sensors on thirty second
intervals. In addition, users were prompted by the application to manually select an
activity and assign a comfort level using 7-point scale of the PMV index every fifteen
minutes via their cell phones, as shown in Figure 2.c. Cell phone sensors were used
to collect air temperature and relative humidity data. Wearable sensors were used to
collect skin temperature, heart rate, and skin conductivity along with air temperature
and relative humidity data. For this experiment, wearables were worn on the wrists
of participants with no clothing occluding the wearable. The recordings of the indoor
environmental conditions and physiological signals were recoded with time stamps.
Finally, and in parallel, thermal comfort equipment consisting of the data logger and
probes shown in Figure 1, were used, in some cases redundantly, to log mean radiant
temperature, air velocity, air temperature and relative humidity in the space.
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Figure 2. Mobile application documenting real-time indoor environmental
conditions and physiological signals from cell phones and wearables

Next, the PMV index for each individual was calculated for the duration of the case
study using data recorded using traditional thermal comfort equipment in addition to
the clothing and activities levels recorded by the mobile application. Finally, the
authors investigated how data collected using wearable devices could be used to
predict thermal comfort. However, this requires two additional methods:
1) Data smoothing and alignment: The data had fluctuations due to noise.
Moreover, the difference in the sampling rate of devices makes the collected
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data asynchronous. By applying these techniques, the shape of the data is
represented more clearly and all the data are matched correctly in time.
Specifically, the data collected by the mobile application and written to .csv
files were smoothed based on five-minute intervals and aligned with the thermal
comfort equipment based on a one-minute basis.

2) Machine learning technique: Artificial Neural Networks ANNSs is a branch of
statistical learning models in machine learning and cognitive science which can
be used to estimate or calculate an output relative to a number of inputs. ANNs
are generally presented as systems of interconnected neurons which exchange
information among each other. The connection have numeric weights that can
be tuned based on training process which allow neural networks to adapt to
inputs and capable of learning to solve problems (Krose and Smagt 1996;
Stergiou and Sigano 1989).

In this research, as shown in Figure 3, an ANN was created to evaluate the

correlation of an estimated PMV index to inputs that can be measured using a

wearable device, including indoor environmental conditions and physiological

signals.
. AT
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Figure 3. Layout of Artificial Neural Networks

A NeuroSolutions Infinity tool was used to process the collected data.
NeuroSolutions Infinity uses 44 functions to analyze the correlation of a number of
input parameters with a desired output and to identify the best prediction model
(NeuroSolutions 2015).

ANALYSIS

The data collected for each participant was organized and summarized for
analysis. Air temperature and relative humidity were measured for each participant
using three devices- cell phones, wearable devices, and thermal comfort equipment.
The collected data showed variations across devices when measuring air temperature
and relative humidity. The thermal comfort equipment had been recently calibrated
by the manufacture, and, its data, therefore, was considered to be “ground truth” for
the research. The authors performed a separate analysis comparing cell phone
sensors and thermal comfort equipment. For this test, as shown in Figure 4, the four
test cell phones were placed side by side on the table along with the air temperature
and relative humidity instrument probe for an hour, while the indoor environmental
conditions varied. Results of this analysis revealed discrepancies in measured air
temperature and relative humidity across all devices even after data smoothing (see
Figure 4). Accordingly, the authors concluded that sensors both cell phone and
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wearable devices lacked a degree of accuracy and will require additional testing and
calibration in the future. Nevertheless, findings suggest the proposed method is
feasibility and could become practical once better sensing techniques are available.
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Figure 4. Cell phone sensor accuracy across air temp. and relative humidity

Next the authors organized and summarized the pilot study data collected for
each of the participants. As shown in Figure 5 for two participants, seven data
streams captured using both wearable sensors and stationary thermal comfort
equipment were graphed, along with an overlay of the aligned PMV index. As
previously discussed, the PMV index was calculated using thermal comfort
equipment sensors and user inputs regarding clothing and activity level.
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Figure 5. Sample summary of data collected for two participants

Analysis of the data at this scale, did not immediately reveal significant
patterns. It is possible to observe, however, that several discontinuities occurred in the
data collected using the wearables. As noted by the participants during the pilot test,
the wearable devices did not always maintain good contact with the skin’s surface
due primarily to sizing issues.

To further study the feasibility of using wearable devices to measure thermal
comfort of building occupants, the collected data was analyzed as inputs and using
ANN to calculate PMV index. Analyses of two data sets were performed using
NeuroSolutions Infinity to predict PMV values based on a number of input
parameters. In the first analysis, ANN used a dataset consisting of skin temperature,
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heart rate, and respiration rate to predict the values of PMV. The results of the best
model in the first analysis showed 0.95 correlation between 16 inputs and PMV, as
shown in Figure 6 (a). In the second analysis, air temperature and relative humidity
data were added to the dataset. Therefore, in the second analysis ANN used a dataset
consisting of skin temperature, heart rate, respiration rate, air temperature and relative
humidity to predict the values of PMV. The results of the best model in the second
analysis showed 0.999 correlation between 5 inputs and PMV, as shown in Figure 6
(b). In this case, the correlation provides a maximum absolute error of 0.09 PMV and
root mean square error of 0.023 PMV. The five input parameters of the best model
were identified as air temperature, square root of the summation of perspiration and
air temperature, summation of perspiration and relative humidity, skin temperature,
and heart rate with a contribution to PMV index of 28.1%, 27.9%, 19.2%, 12.8%, and
12.1%, respectively. It should be noted that for both analyses, the tool used 75% of
the data (244 rows) for training the models, 20% of the data (64 rows) for validating
the modes, and 5% of the data (17 rows) for evaluating the models performance.
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Figure 6. Analysis of data collection of wearable devices to calculate PMV index

DISCUSSION

Initial findings of this study are promising and merit further research.
Specifically, need exists to increase the suitability of wearables to support thermal
comfort assessment. Today’s off-the-shelf wearables contain sensors that run at high
sampling rates (e.g. 100Hz), designed mainly for activity tracking, health monitoring,
and purposes other than thermal comfort evaluation. This design decision is one of
the reasons wearable devices exhaust their battery quickly. In most cases, these
sampling rates are one to two orders of magnitude higher than needed for comfort
evaluation purposes. On the other hand, the sensors’ reliability is low and the
accuracy fluctuates. In response, we propose to explore a set of sensing algorithms,
techniques, designs, and optimizations to increase the suitability of wearable for
thermal comfort assessment. We will customize existing sensors to adjust sampling
frequency and sensitivity level, thereby increasing accuracy and saving energy at the
same time.

Initial findings identified a model that has a 0.999 correlation to the current
PMV model using inputs that can be unobtrusively and dynamically measured with
wearables. In contrast, the current model requires cumbersome (expensive,
nonspecific) equipment to assess. Using wearables to estimate PMV will not only
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address problematic data collection, but may also extend the existing PMV model by
providing opportunities for generating location-specific, adaptive and individual
thermal comfort predictions.

Finally, initial findings highlight opportunities to eventually develop new
metrics (and, eventually, standards) for assessing thermal comfort across buildings.
The authors have plans to develop a thermal comfort report card that can generate
scores for buildings based on the thermal satisfaction of building occupants as
aggregated across spaces (Abdallah et al. 2015). Eventual outcomes could include
helping building owners and operators evaluate and compare thermal comfort
performance, to identify areas that may require improvements, and to create the
opportunity to simultaneously optimize for energy and thermal comfort performance.

CONCLUSION

Thermal comfort of building occupants is a major criterion in designing
buildings, evaluating their operation performance, and optimizing their energy usage.
This paper studied the feasibility of using wearable devices to measure and monitor
thermal comfort of building occupants. A mobile application was developed to collect
data of building occupants using sensors in cell phones and wearable devices,
including location, air temperature, relative humidity, skin temperature, heart rate,
and perspiration rate. A pilot case study of four participants was performed to (1) test
the developed mobile application in collecting data of indoor environmental
conditions and physiological signals, (2) identify the accuracy of the collected data
using wearable devices, and (3) study the feasibility of predicting PMV index based
on the collected data of indoor environmental conditions and physiological signals
using wearable devices. Calibrated thermal comfort equipment was used to establish
“ground truth” PMV estimates for the study. Testing showed variation in the accuracy
of cell phone and wearable device sensors. Artificial Neural Networks (ANNs) were
used to study the feasibility of predicting PMV index using data that can be collected
using wearable devices. Results of ANNs analysis showed 0.999 correlation with
maximum root mean square error of 0.023 PMV. The input parameters of the best
model were identified as air temperature, square root of the summation of
perspiration and air temperature, summation of perspiration and relative humidity,
skin temperature, and heart rate with contribution to PMV index of 28.1%, 27.9%,
19.2%, 12.8%, and 12.1%, respectively. These are promising results and suggest
significant potential for creating new models that can predict PMV index using
parameters that can be measured using wearable devices. However, existing sensors
in wearable devices need to be improved and further customized to increase their
accuracy and reliability in order to facilitate such predictions.
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